AS066/KH0079 - Pendant Pendant Sums


Drawings:

Right Handed Sums:     # Sums = 25,  Max # Summands = 9,   (Min, Mean, Max) Sum Values = (12, 32, 160)
Click on Image to View Larger

Left Handed Sums:     # Sums = 15,  Max # Summands = 6,   (Min, Mean, Max) Sum Values = (12, 25, 72)
Click on Image to View Larger

Right Handed Sum Detail: - Click on column name to sort
# Color Sum Schema Sum Cord Sum Cord Value # Summands Summands
1
p33, 1 : 160W1609p14: 16W + p15: 15W + p16: 24W + p17: 9W + p18: 72W + p19: 9W + p20: 9W + p21: 0KB + p22: 6W
2
p43, 2 : 101W1016p25: 10KB + p26: 30KB + p27: 8MB + p28: 50KB + p29: 0KB + p30: 3MB
3
p127, 2 : 21W212p63: 6MB + p64: 15MB
4
p159, 2 : 15W153p20: 9W + p21: 0KB + p22: 6W
5
p169, 3 : 24W244p19: 9W + p20: 9W + p21: 0KB + p22: 6W
6
p1810, 2 : 72W725p23: 8W + p24: 16W + p25: 10KB + p26: 30KB + p27: 8MB
7
p2413, 1 : 16W164p109: 4KB + p110: 4MB + p111: 4MB + p112: 4MB
8
p3620, 4 : 30MB302p42: 13MB + p43: 17MB
9
p3922, 2 : 40MB405p60: 6MB + p61: 6MB + p62: 7MB + p63: 6MB + p64: 15MB
10
p4225, 1 : 13MB132p51: 6MB + p52: 7MB
11
p4525, 4 : 17MB172p135: 12W + p136: 5MB
12
p8137, 4 : 12W122p92: 6W + p93: 6W
13
p9040, 4 : 13W132p91: 7W + p92: 6W
14
p10144, 2 : 28MB287p109: 4KB + p110: 4MB + p111: 4MB + p112: 4MB + p113: 4MB + p114: 4MB + p115: 4MB
15
p10244, 3 : 29MB292p108: 25MB + p109: 4KB
16
p10344, 4 : 15MB153p136: 5MB + p137: 5MB + p138: 5MB
17
p10846, 4 : 25MB253p130: 12MB + p131: 0PK + p132: 13W
18
p12149, 4 : 18W183p157: 6KB + p158: 6W + p159: 6W
19
p12449, 7 : 32W325p135: 12W + p136: 5MB + p137: 5MB + p138: 5MB + p139: 5MB
20
p12549, 8 : 31W313p134: 14W + p135: 12W + p136: 5MB
21
p13353, 2 : 13W132p155: 6KB + p156: 7KB
22
p13553, 4 : 12W122p154: 6KB + p155: 6KB
23
p14756, 3 : 31MB315p154: 6KB + p155: 6KB + p156: 7KB + p157: 6KB + p158: 6W
24
p14856, 4 : 19MB193p154: 6KB + p155: 6KB + p156: 7KB
25
p15256, 8 : 25MB254p154: 6KB + p155: 6KB + p156: 7KB + p157: 6KB

Left Handed Sum Detail: - Click on column name to sort
# Color Sum Schema Sum Cord Sum Cord Value # Summands Summands
1
p1810, 2 : 72W723p9: 24KB + p10: 24KB + p11: 24W
2
p3320, 1 : 40MB402p25: 10KB + p26: 30KB
3
p6432, 1 : 15MB153p20: 9W + p21: 0KB + p22: 6W
4
p6934, 1 : 13MB132p62: 7MB + p63: 6MB
5
p7134, 3 : 12MB122p60: 6MB + p61: 6MB
6
p10044, 1 : 28MB283p62: 7MB + p63: 6MB + p64: 15MB
7
p10546, 1 : 25MB254p96: 7MB + p97: 6MB + p98: 6MB + p99: 6MB
8
p11849, 1 : 31W316p58: 6MB + p59: 0KB + p60: 6MB + p61: 6MB + p62: 7MB + p63: 6MB
9
p12149, 4 : 18W183p97: 6MB + p98: 6MB + p99: 6MB
10
p12951, 3 : 14MB142p22: 6W + p23: 8W
11
p13051, 4 : 12MB123p114: 4MB + p115: 4MB + p116: 4MB
12
p13253, 1 : 13W132p96: 7MB + p97: 6MB
13
p14556, 1 : 25MB255p139: 5MB + p140: 5MB + p141: 5MB + p142: 5MB + p143: 5MB
14
p14756, 3 : 31MB313p134: 14W + p135: 12W + p136: 5MB
15
p14856, 4 : 19MB193p96: 7MB + p97: 6MB + p98: 6MB

Khipu Notes:
Ascher Databook Notes:
  1. This khipu is associated with AS059-KH0080. See discussion under AS059.
  2. From the discoloration of the main cord, and by extrapolation based on the spacing of the complete groups, we hypothesize that this khipu contained 24 groups of 8 pendants.
    Each of the groups had a top cord. Of the original 80 pendants of the first 10 groups, only 35 remain and so the first complete group starts with pendant 36. Of the last 14 groups, no pendants are missing.
  3. Two loose broken cords were associated with this khipu: one, colored DB, had a value of 50; the other, colored AB, had a value of 14.
  4. Both common forms of top cord attachment are present on this khipu. In groups 18, 19, and 21-24, the top cord unites the pendants. In the remaining groups, the top cord is attached to the main cord in the center of the group.
    The first pendant of the 18th group (P92) is a different color than the rest of the group reinforcing the idea that this is a place where a change occurs.
  5. All pendant cords within a group are the same color with the exception of group 18 noted above and groups 16, 20, and 23 in which the first 4 pendants are one color and the last 4 another color.
    In 2 of these groups the top cord is the same color as the first 4 pendants in the group. The third group has the top cord missing so its color is unknown.
  6. Only 6 groups have the top cord the same color as all the pendants in the group. Five of these groups are the only groups for which all pendants in the group have the same value.
  7. The color of the top cords for groups 8-11 (BB, W, DB, W) are repeated for the next 4 groups (12-15).
  8. With the exception of group 19, all groups that have all pendant values and top cord value present show the following relationship:
    \[ \sum\limits_{j=1}^4 P_{ij} = \sum\limits_{j=5}^8 P_{ij} = \frac{top\_value}{2}\;\;\;for\;(i=13,15,16,17,18,21,22,23,24) \]
    Where one of the three parts of the relationship is unknown due to breakage, the other two still appear:
    \[ \sum\limits_{j=1}^4 P_{ij} = \sum\limits_{j=5}^8 P_{ij} = \frac{top\_value}{2}\;\;\;for\;(i=12,14,17) \]
    \[ \sum\limits_{j=1}^4 P_{ij} = \frac{top\_value}{2}\;\;\;for\;(i=9) \]
    \[ \sum\limits_{j=5}^8 P_{ij} = \frac{top\_value}{2}\;\;\;for\;(i=2,10,11) \]

    (Note: Pij is the value of the jth pendant in the ith group.)

  9. As noted in observation 6, five groups have all equal pendant values. The sum value on the top cord must, therefore, be a multiple of 8.
    In some cases where the top value is not a multiple of 8, the pendant values can be viewed as top value/ 8 rounded to the nearest integers.
    This is seen in groups 11,12,16,23 where the sums are 50. The pendant values are 6x6 + 2x7.
    Similarly in group 9, the pendant values can be viewed as rounded to the nearest multiple of 10. That is 150 = 3x40 + 1x30.
  10. Groups 17 and 19 both have the same relationship among the first 4 pendants:
    \[ P_{1} = P_{2} = \frac{x}{4} + 3 \]
    \[ P_{3} = \frac{x}{4} + 4 \]
    \[ P_{4} = \frac{x}{4} - 10 \]
    And as a result:
    \[ P_{1}+P_{2} = \frac{x}{2} + 6,\;\;\;\;\;\;\;P_{3}+P_{4} = \frac{x}{2} - 6\]
    For group 17, where X=100 and for group 19, where X=112.

    Since group 19 is the only group for which P1 + P2 + P3 + P4 ≠ P5 + P6 + P7 + P8, it is interesting to note that also:

    \[ P_{1}+P_{2}+P_{3}+P_{4} = \frac{top\_value}{2}-6\;\;\;where\;\frac{top\_value}{2}\;is\;rounded\;DOWN \]
    \[ P_{5}+P_{6}+P_{7}+P_{8} = \frac{top\_value}{2}+6\;\;\;where\;\frac{top\_value}{2}\;is\;rounded\;UP \]