AS066/KH0079 - Colored Pendant Sums


Drawings:

Right Handed Sums:     # Sums = 43,  Max # Summands = 10,   (Min, Mean, Max) Sum Values = (12, 47, 300)
Click on Image to View Larger

Left Handed Sums:     # Sums = 34,  Max # Summands = 10,   (Min, Mean, Max) Sum Values = (12, 46, 300)
Click on Image to View Larger

Right Handed Sum Detail: - Click on column name to sort
# Color Sum Schema Sum Cord Sum Cord Value # Summands Summands
1
p33, 1 : 160W1608p14: 16W + p15: 15W + p16: 24W + p17: 9W + p18: 72W + p19: 9W + p20: 9W + p22: 6W
2
p43, 2 : 101W1017p89: 13W + p90: 13W + p91: 7W + p92: 6W + p93: 6W + p94: 6W + p95: 50W
3
p117, 1 : 24W243p19: 9W + p20: 9W + p22: 6W
4
p127, 2 : 21W214p160: 7W + p161: 6W + p163: 4W + p164: 4W
5
p138, 1 : 170KB1703p28: 50KB + p41: 110KB + p77: 10KB
6
p149, 1 : 16W164p163: 4W + p164: 4W + p165: 4W + p166: 4W
7
p169, 3 : 24W243p19: 9W + p20: 9W + p22: 6W
8
p1810, 2 : 72W729p133: 13W + p134: 14W + p135: 12W + p158: 6W + p159: 6W + p160: 7W + p161: 6W + p163: 4W + p164: 4W
9
p2413, 1 : 16W164p163: 4W + p164: 4W + p165: 4W + p166: 4W
10
p3320, 1 : 40MB403p98: 6MB + p99: 6MB + p100: 28MB
11
p3420, 2 : 40MB403p98: 6MB + p99: 6MB + p100: 28MB
12
p3520, 3 : 40MB403p98: 6MB + p99: 6MB + p100: 28MB
13
p3620, 4 : 30MB303p45: 17MB + p51: 6MB + p52: 7MB
14
p3721, 1 : 300W30010p95: 50W + p118: 31W + p119: 31W + p120: 32W + p121: 18W + p122: 31W + p123: 31W + p124: 32W + p125: 31W + p132: 13W
15
p3822, 1 : 40MB403p98: 6MB + p99: 6MB + p100: 28MB
16
p3922, 2 : 40MB403p98: 6MB + p99: 6MB + p100: 28MB
17
p5027, 1 : 50W504p73: 13W + p74: 13W + p75: 13W + p76: 11W
18
p6432, 1 : 15MB153p136: 5MB + p137: 5MB + p138: 5MB
19
p6532, 2 : 15MB153p136: 5MB + p137: 5MB + p138: 5MB
20
p6632, 3 : 15MB153p136: 5MB + p137: 5MB + p138: 5MB
21
p6833, 1 : 102W1028p78: 13W + p79: 12W + p80: 13W + p81: 12W + p82: 13W + p83: 13W + p84: 13W + p85: 13W
22
p7134, 3 : 12MB123p110: 4MB + p111: 4MB + p112: 4MB
23
p7937, 2 : 12W123p163: 4W + p164: 4W + p165: 4W
24
p8137, 4 : 12W123p163: 4W + p164: 4W + p165: 4W
25
p10044, 1 : 28MB287p110: 4MB + p111: 4MB + p112: 4MB + p113: 4MB + p114: 4MB + p115: 4MB + p116: 4MB
26
p10144, 2 : 28MB287p110: 4MB + p111: 4MB + p112: 4MB + p113: 4MB + p114: 4MB + p115: 4MB + p116: 4MB
27
p10344, 4 : 15MB153p136: 5MB + p137: 5MB + p138: 5MB
28
p10445, 1 : 200MB2008p145: 25MB + p146: 25MB + p147: 31MB + p148: 19MB + p149: 25MB + p150: 25MB + p151: 25MB + p152: 25MB
29
p10546, 1 : 25MB255p136: 5MB + p137: 5MB + p138: 5MB + p139: 5MB + p140: 5MB
30
p10646, 2 : 25MB255p136: 5MB + p137: 5MB + p138: 5MB + p139: 5MB + p140: 5MB
31
p10746, 3 : 25MB255p136: 5MB + p137: 5MB + p138: 5MB + p139: 5MB + p140: 5MB
32
p10846, 4 : 25MB255p136: 5MB + p137: 5MB + p138: 5MB + p139: 5MB + p140: 5MB
33
p11748, 1 : 32MB325p130: 12MB + p136: 5MB + p137: 5MB + p138: 5MB + p139: 5MB
34
p11849, 1 : 31W314p135: 12W + p158: 6W + p159: 6W + p160: 7W
35
p11949, 2 : 31W314p135: 12W + p158: 6W + p159: 6W + p160: 7W
36
p12049, 3 : 32W323p134: 14W + p135: 12W + p158: 6W
37
p12149, 4 : 18W184p161: 6W + p163: 4W + p164: 4W + p165: 4W
38
p12249, 5 : 31W314p135: 12W + p158: 6W + p159: 6W + p160: 7W
39
p12349, 6 : 31W314p135: 12W + p158: 6W + p159: 6W + p160: 7W
40
p12449, 7 : 32W323p134: 14W + p135: 12W + p158: 6W
41
p12549, 8 : 31W314p135: 12W + p158: 6W + p159: 6W + p160: 7W
42
p13453, 3 : 14W143p161: 6W + p163: 4W + p164: 4W
43
p13553, 4 : 12W123p163: 4W + p164: 4W + p165: 4W

Left Handed Sum Detail: - Click on column name to sort
# Color Sum Schema Sum Cord Sum Cord Value # Summands Summands
1
p3721, 1 : 300W30010p4: 101W + p11: 24W + p12: 21W + p14: 16W + p15: 15W + p16: 24W + p17: 9W + p18: 72W + p19: 9W + p20: 9W
2
p4225, 1 : 13MB133p27: 8MB + p30: 3MB + p31: 2MB
3
p6432, 1 : 15MB154p27: 8MB + p30: 3MB + p31: 2MB + p32: 2MB
4
p6532, 2 : 15MB154p27: 8MB + p30: 3MB + p31: 2MB + p32: 2MB
5
p6632, 3 : 15MB154p27: 8MB + p30: 3MB + p31: 2MB + p32: 2MB
6
p6934, 1 : 13MB133p27: 8MB + p30: 3MB + p31: 2MB
7
p7034, 2 : 13MB133p27: 8MB + p30: 3MB + p31: 2MB
8
p7234, 4 : 13MB133p27: 8MB + p30: 3MB + p31: 2MB
9
p8639, 1 : 104W1045p18: 72W + p19: 9W + p20: 9W + p22: 6W + p23: 8W
10
p9542, 1 : 50W504p73: 13W + p74: 13W + p75: 13W + p76: 11W
11
p10044, 1 : 28MB283p62: 7MB + p63: 6MB + p64: 15MB
12
p10144, 2 : 28MB283p62: 7MB + p63: 6MB + p64: 15MB
13
p10344, 4 : 15MB154p27: 8MB + p30: 3MB + p31: 2MB + p32: 2MB
14
p10546, 1 : 25MB254p51: 6MB + p52: 7MB + p53: 6MB + p54: 6MB
15
p10646, 2 : 25MB254p51: 6MB + p52: 7MB + p53: 6MB + p54: 6MB
16
p10746, 3 : 25MB254p51: 6MB + p52: 7MB + p53: 6MB + p54: 6MB
17
p10846, 4 : 25MB254p51: 6MB + p52: 7MB + p53: 6MB + p54: 6MB
18
p11748, 1 : 32MB323p67: 6MB + p69: 13MB + p70: 13MB
19
p12049, 3 : 32W324p19: 9W + p20: 9W + p22: 6W + p23: 8W
20
p12149, 4 : 18W183p92: 6W + p93: 6W + p94: 6W
21
p12449, 7 : 32W324p19: 9W + p20: 9W + p22: 6W + p23: 8W
22
p12650, 1 : 237MB2379p30: 3MB + p31: 2MB + p32: 2MB + p33: 40MB + p34: 40MB + p35: 40MB + p36: 30MB + p38: 40MB + p39: 40MB
23
p13051, 4 : 12MB123p110: 4MB + p111: 4MB + p112: 4MB
24
p14455, 1 : 40MB403p98: 6MB + p99: 6MB + p100: 28MB
25
p14556, 1 : 25MB254p51: 6MB + p52: 7MB + p53: 6MB + p54: 6MB
26
p14656, 2 : 25MB254p51: 6MB + p52: 7MB + p53: 6MB + p54: 6MB
27
p14756, 3 : 31MB313p44: 8MB + p45: 17MB + p51: 6MB
28
p14856, 4 : 19MB193p51: 6MB + p52: 7MB + p53: 6MB
29
p14956, 5 : 25MB254p51: 6MB + p52: 7MB + p53: 6MB + p54: 6MB
30
p15056, 6 : 25MB254p51: 6MB + p52: 7MB + p53: 6MB + p54: 6MB
31
p15156, 7 : 25MB254p51: 6MB + p52: 7MB + p53: 6MB + p54: 6MB
32
p15256, 8 : 25MB254p51: 6MB + p52: 7MB + p53: 6MB + p54: 6MB
33
p15357, 1 : 200KB2004p25: 10KB + p26: 30KB + p28: 50KB + p41: 110KB
34
p17161, 1 : 32W323p134: 14W + p135: 12W + p158: 6W

Khipu Notes:
Ascher Databook Notes:
  1. This khipu is associated with AS059-KH0080. See discussion under AS059.
  2. From the discoloration of the main cord, and by extrapolation based on the spacing of the complete groups, we hypothesize that this khipu contained 24 groups of 8 pendants.
    Each of the groups had a top cord. Of the original 80 pendants of the first 10 groups, only 35 remain and so the first complete group starts with pendant 36. Of the last 14 groups, no pendants are missing.
  3. Two loose broken cords were associated with this khipu: one, colored DB, had a value of 50; the other, colored AB, had a value of 14.
  4. Both common forms of top cord attachment are present on this khipu. In groups 18, 19, and 21-24, the top cord unites the pendants. In the remaining groups, the top cord is attached to the main cord in the center of the group.
    The first pendant of the 18th group (P92) is a different color than the rest of the group reinforcing the idea that this is a place where a change occurs.
  5. All pendant cords within a group are the same color with the exception of group 18 noted above and groups 16, 20, and 23 in which the first 4 pendants are one color and the last 4 another color.
    In 2 of these groups the top cord is the same color as the first 4 pendants in the group. The third group has the top cord missing so its color is unknown.
  6. Only 6 groups have the top cord the same color as all the pendants in the group. Five of these groups are the only groups for which all pendants in the group have the same value.
  7. The color of the top cords for groups 8-11 (BB, W, DB, W) are repeated for the next 4 groups (12-15).
  8. With the exception of group 19, all groups that have all pendant values and top cord value present show the following relationship:
    \[ \sum\limits_{j=1}^4 P_{ij} = \sum\limits_{j=5}^8 P_{ij} = \frac{top\_value}{2}\;\;\;for\;(i=13,15,16,17,18,21,22,23,24) \]
    Where one of the three parts of the relationship is unknown due to breakage, the other two still appear:
    \[ \sum\limits_{j=1}^4 P_{ij} = \sum\limits_{j=5}^8 P_{ij} = \frac{top\_value}{2}\;\;\;for\;(i=12,14,17) \]
    \[ \sum\limits_{j=1}^4 P_{ij} = \frac{top\_value}{2}\;\;\;for\;(i=9) \]
    \[ \sum\limits_{j=5}^8 P_{ij} = \frac{top\_value}{2}\;\;\;for\;(i=2,10,11) \]

    (Note: Pij is the value of the jth pendant in the ith group.)

  9. As noted in observation 6, five groups have all equal pendant values. The sum value on the top cord must, therefore, be a multiple of 8.
    In some cases where the top value is not a multiple of 8, the pendant values can be viewed as top value/ 8 rounded to the nearest integers.
    This is seen in groups 11,12,16,23 where the sums are 50. The pendant values are 6x6 + 2x7.
    Similarly in group 9, the pendant values can be viewed as rounded to the nearest multiple of 10. That is 150 = 3x40 + 1x30.
  10. Groups 17 and 19 both have the same relationship among the first 4 pendants:
    \[ P_{1} = P_{2} = \frac{x}{4} + 3 \]
    \[ P_{3} = \frac{x}{4} + 4 \]
    \[ P_{4} = \frac{x}{4} - 10 \]
    And as a result:
    \[ P_{1}+P_{2} = \frac{x}{2} + 6,\;\;\;\;\;\;\;P_{3}+P_{4} = \frac{x}{2} - 6\]
    For group 17, where X=100 and for group 19, where X=112.

    Since group 19 is the only group for which P1 + P2 + P3 + P4 ≠ P5 + P6 + P7 + P8, it is interesting to note that also:

    \[ P_{1}+P_{2}+P_{3}+P_{4} = \frac{top\_value}{2}-6\;\;\;where\;\frac{top\_value}{2}\;is\;rounded\;DOWN \]
    \[ P_{5}+P_{6}+P_{7}+P_{8} = \frac{top\_value}{2}+6\;\;\;where\;\frac{top\_value}{2}\;is\;rounded\;UP \]