UR1084/KH0097 - Colored Pendant Sum
Drawings:
Right Handed Sums: # Sums = 4, Max # Summands = 4, (Min, Mean, Max) Sum Values = (66, 74, 76)
Click on Image to View Larger
Left Handed Sums: # Sums = 8, Max # Summands = 8, (Min, Mean, Max) Sum Values = (43, 345, 1162)
Click on Image to View Larger
Right Handed Sum Detail: - Click on column name to sort
# | Color | Sum Schema | Sum Cord | Sum Cord Value | # Summands | Summands |
---|---|---|---|---|---|---|
1 | p212, 8 : 76W:BL | 76 | 3 | p213: 31W:BL + p222: 22W:BL + p227: 23W:BL | ||
2 | p11910, 8 : 76W:BL | 76 | 3 | p213: 31W:BL + p222: 22W:BL + p227: 23W:BL | ||
3 | p16814, 10 : 66W:MB | 66 | 4 | p210: 21W:MB + p211: 21W:MB + p221: 12W:MB + p235: 12W:MB | ||
4 | p18215, 10 : 76W:MB | 76 | 4 | p207: 22W:MB + p210: 21W:MB + p211: 21W:MB + p221: 12W:MB |
Left Handed Sum Detail: - Click on column name to sort
# | Color | Sum Schema | Sum Cord | Sum Cord Value | # Summands | Summands |
---|---|---|---|---|---|---|
1 | p20117, 14 : 800MB | 800 | 8 | p4: 100MB + p17: 100MB + p66: 100MB + p78: 100MB + p90: 100MB + p102: 100MB + p114: 100MB + p125: 100MB | ||
2 | p21919, 4 : 200W-BY | 200 | 7 | p7: 33W-BY + p19: 23W-BY + p20: 33W-BY + p32: 23W-BY + p33: 33W-BY + p44: 22W-BY + p45: 33W-BY | ||
3 | p25221, 9 : 54W:MB | 54 | 3 | p210: 21W:MB + p211: 21W:MB + p221: 12W:MB | ||
4 | p25822, 1 : 1162W | 1162 | 3 | p98: 42W + p100: 1078W + p110: 42W | ||
5 | p28123, 10 : 43W:BY | 43 | 3 | p209: 11W:BY + p220: 10W:BY + p225: 22W:BY | ||
6 | p28924, 4 : 100W-BY | 100 | 4 | p33: 33W-BY + p44: 22W-BY + p45: 33W-BY + p52: 12W-BY | ||
7 | p30425, 4 : 200W:BY | 200 | 8 | p143: 33W:BY + p154: 66W:BY + p191: 10W:BY + p192: 22W:BY + p194: 32W:BY + p196: 20W:BY + p206: 6W:BY + p209: 11W:BY | ||
8 | p31626, 4 : 200W-BY | 200 | 7 | p7: 33W-BY + p19: 23W-BY + p20: 33W-BY + p32: 23W-BY + p33: 33W-BY + p44: 22W-BY + p45: 33W-BY |
Khipu Notes:
Ashok Khosla's Notes:
Juliana Martins proposes that this is an astronomical khipu - see Martins
Ascher Databook Notes:
Juliana Martins proposes that this is an astronomical khipu - see Martins
Ascher Databook Notes:
- The finishing knot on P10 is knotted around P11. Thus, the end of P10 is tied to P11 at 5. 5 cm. from the bottom of P11.
- Small spaces on the main cord appear between some adjacent pendants. The darkened color of the main cord at those points, leads us to assume that a pendant was present but is now missing. These hypothetical pendants are included in the listing but designated as missing.
- By spacing, the khipu is separated into 25 groups but ends with a break in the main cord at the middle of the 25th group. A marker on the main cord separates the first 15 groups from the last 10 groups.
- At first glance, the groups seem to vary in size and color pattern. However, when viewed as groups of 15 pendants with some positions non-existent in each group, the colors and values are repetitions. The 25 groups of 15 pendants have been arranged in a rectangular table (see Table 1). A blank means the position is non-existent, an M is a missing pendant, and a ? indicates that the pendant is broken so the value is unknown. An unequal sign ≠has been used to mark a change in color. Where there is no color change, but just a color anomaly, the value has been grouped with parentheses i.e. (39). Observe from the table that although similarities remain, there are decided differences between part 1 (groups 1-15) and part 2 (groups 16-26). Also, within part 1, there are several changes after the 5th group and after the 12th group.
Table 1
Group Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 1080 12 22 100 40 23 33 65 33 12 11≠42 456 2 1091 ? 22 100 40 23 33 (76) 33 33 42 ? 3 1078 12 21 ? ? M 23 33 66 32 33 42 4 1069 12 22 ? 40 M 22 33 66 32 33 42 ?≠5 1077 (22) 22≠? 50≠M ≠22 32 66 32 33 43 ? 6 1078 12 100 50 222 22 33 () 32 33 42 ? 7 1179 12≠100 50 222 22 33 66 32 33 43 4?? 8 1089 12 100 50 M 22 33 66 32 33 42 4??≠9 1078 12 100 40 222 22 32 66 32 33 42 467 10 1087 (12) 100 40 222 22 32 () 22 33 42 11 1087 12 100 40 M 22 32 ? 32 44 42 12 1065 12 ≠100≠40 ≠? 22≠32≠M ≠3?≠(33) (42) - 13 912 11 0 100 (4?) 0 222 M 32 (66) 32 ? 32 14 1030 21 0 100 M≠0 222 32 32 66 32 ? ≠(42) 15 924 21 0 100 40 0 222 32 32 66 32 ? (M) 42 16 1356 12 200 10 (22) 32 32 M (20) ? 44 (0) 34 8?? 17 1164 (12) ? 200 6 22 21 11≠21 21 ? 31 (0) 22 18 1185 (25) ? (200) 10 (12) 22 22 ? 22 ? 23 ? 34 19 1015 13 43≠1?? 15 12 22 23 23 23 M 32≠? (34) 20 1575 14 ? 200 (7) 32 64 64 54 54 M 32 ? 22 21 1162 13 45 100 6 12 23 23 23 23 (?) 32 ? 31 22 1385 12 ? 100 10 22 43 34 3? 43 22 22 M 32 23 956 11 (?) 100 14 23 13 23 ? 13 (?) 22 (?) 22 ? 24 996 10 0 200 6 ? 23 23 ? 22 ? 22 25 997 11 0 200 10 12