UR1175/KH0192 - Colored Pendant Sums


Drawings:

Right Handed Sums:     # Sums = 30,  Max # Summands = 10,   (Min, Mean, Max) Sum Values = (12, 76, 290)
Click on Image to View Larger

Left Handed Sums:     # Sums = 20,  Max # Summands = 8,   (Min, Mean, Max) Sum Values = (12, 78, 290)
Click on Image to View Larger

Right Handed Sum Detail: - Click on column name to sort
# Color Sum Schema Sum Cord Sum Cord Value # Summands Summands
1
p11, 1 : 26LB263p71: 5LB + p76: 11LB + p81: 10LB
2
p21, 2 : 160YG1604p162: 16YG + p167: 30YG + p172: 54YG + p177: 60YG
3
p52, 1 : 21W215p150: 6W + p155: 3W + p160: 3W + p165: 3W + p170: 6W
4
p62, 2 : 26LB263p71: 5LB + p76: 11LB + p81: 10LB
5
p103, 1 : 25W257p140: 2W + p145: 2W + p150: 6W + p155: 3W + p160: 3W + p165: 3W + p170: 6W
6
p113, 2 : 35LB353p191: 20LB + p196: 10LB + p201: 5LB
7
p133, 4 : 100YG1003p162: 16YG + p167: 30YG + p172: 54YG
8
p154, 1 : 23W236p145: 2W + p150: 6W + p155: 3W + p160: 3W + p165: 3W + p170: 6W
9
p205, 1 : 36W364p165: 3W + p170: 6W + p175: 17W + p180: 10W
10
p215, 2 : 33LB335p46: 5LB + p51: 10LB + p56: 10LB + p66: 3LB + p71: 5LB
11
p225, 3 : 122YG1223p182: 29YG + p187: 58YG + p192: 35YG
12
p256, 1 : 12W123p150: 6W + p155: 3W + p160: 3W
13
p307, 1 : 85W8510p155: 3W + p160: 3W + p165: 3W + p170: 6W + p175: 17W + p180: 10W + p185: 10W + p190: 8W + p195: 12W + p200: 13W
14
p358, 1 : 66W667p165: 3W + p170: 6W + p175: 17W + p180: 10W + p185: 10W + p190: 8W + p195: 12W
15
p378, 3 : 129YG1293p187: 58YG + p192: 35YG + p197: 36YG
16
p4510, 1 : 12W123p150: 6W + p155: 3W + p160: 3W
17
p5011, 1 : 13W134p125: 5W + p130: 4W + p135: 2W + p140: 2W
18
p5712, 3 : 290YG2904p82: 100YG + p87: 120YG + p92: 40YG + p97: 30YG
19
p6013, 1 : 62W6210p140: 2W + p145: 2W + p150: 6W + p155: 3W + p160: 3W + p165: 3W + p170: 6W + p175: 17W + p180: 10W + p185: 10W
20
p6514, 1 : 30W303p185: 10W + p190: 8W + p195: 12W
21
p7015, 1 : 31W319p130: 4W + p135: 2W + p140: 2W + p145: 2W + p150: 6W + p155: 3W + p160: 3W + p165: 3W + p170: 6W
22
p8217, 3 : 100YG1003p162: 16YG + p167: 30YG + p172: 54YG
23
p9920, 5 : 46YB:0G463p139: 12YB:0G + p174: 16YB:0G + p179: 18YB:0G
24
p10622, 2 : 35LB353p191: 20LB + p196: 10LB + p201: 5LB
25
p10822, 4 : 200YB2003p189: 60YB + p218: 50YB + p223: 90YB
26
p11023, 1 : 108W10810p115: 75W + p120: 6W + p125: 5W + p130: 4W + p135: 2W + p140: 2W + p145: 2W + p150: 6W + p155: 3W + p160: 3W
27
p11323, 4 : 250YB2503p128: 50YB + p138: 100YB + p143: 100YB
28
p11524, 1 : 75W753p195: 12W + p200: 13W + p210: 50W
29
p11624, 2 : 66LB667p171: 3LB + p176: 4LB + p181: 12LB + p186: 12LB + p191: 20LB + p196: 10LB + p201: 5LB
30
p12726, 3 : 65YG654p147: 40YG + p152: 6YG + p157: 3YG + p162: 16YG

Left Handed Sum Detail: - Click on column name to sort
# Color Sum Schema Sum Cord Sum Cord Value # Summands Summands
1
p5712, 3 : 290YG2903p27: 82YG + p32: 79YG + p37: 129YG
2
p6514, 1 : 30W303p45: 12W + p50: 13W + p55: 5W
3
p9419, 5 : 42YB:0G423p29: 9YB:0G + p39: 11YB:0G + p44: 22YB:0G
4
p10822, 4 : 200YB2003p58: 100YB + p68: 50YB + p73: 50YB
5
p11123, 2 : 36LB364p71: 5LB + p76: 11LB + p81: 10LB + p86: 10LB
6
p11323, 4 : 250YB2503p53: 100YB + p58: 100YB + p68: 50YB
7
p11624, 2 : 66LB664p76: 11LB + p81: 10LB + p86: 10LB + p106: 35LB
8
p17536, 1 : 17W173p80: 4W + p85: 3W + p90: 10W
9
p18437, 5 : 60YB:0G603p64: 20YB:0G + p69: 20YB:0G + p74: 20YB:0G
10
p19139, 2 : 20LB203p136: 7LB + p141: 6LB + p146: 7LB
11
p19439, 5 : 94YB:0G943p174: 16YB:0G + p179: 18YB:0G + p184: 60YB:0G
12
p19540, 1 : 12W123p150: 6W + p155: 3W + p160: 3W
13
p20041, 1 : 13W134p125: 5W + p130: 4W + p135: 2W + p140: 2W
14
p20942, 5 : 49YB:0G493p44: 22YB:0G + p49: 6YB:0G + p54: 21YB:0G
15
p21043, 1 : 50W508p145: 2W + p150: 6W + p155: 3W + p160: 3W + p165: 3W + p170: 6W + p175: 17W + p180: 10W
16
p21143, 2 : 40LB405p31: 11LB + p36: 11LB + p41: 3LB + p46: 5LB + p51: 10LB
17
p21544, 1 : 70W706p175: 17W + p180: 10W + p185: 10W + p190: 8W + p195: 12W + p200: 13W
18
p21644, 2 : 40LB405p31: 11LB + p36: 11LB + p41: 3LB + p46: 5LB + p51: 10LB
19
p21744, 3 : 140YG1405p142: 75YG + p147: 40YG + p152: 6YG + p157: 3YG + p162: 16YG
20
p22045, 1 : 50W508p145: 2W + p150: 6W + p155: 3W + p160: 3W + p165: 3W + p170: 6W + p175: 17W + p180: 10W

Khipu Notes:
Ascher Databook Notes:
  1. This is one of several khipus acquired by the Museum in 1907 with provenance Pachacamac. For a list of them, see UR1097.
  2. By spacing, the khipu is separated into 45 groups of 5 pendants each. There is a larger space after every 3rd group and a still larger space between the 21st and 22nd groups and the 24th and 25th groups. Thus, the khipu is in 3 parts: part 1 is 7 sets of 3 groups each; part 2 is 1 set of 3 groups; and part 3 is 7 sets of 3 groups.
  3. All groups in part 1 have the same color pattern: W (with a W subsidiary); LB (with an LB subsidiary); YG; YB; YB: 0G. Groups in parts 2 and 3 have the same pattern for the first 3 pendant positions and then vary in one or both of the last 2 positions. Calling the colors in the part 1 pattern C1-C5, the color patterns are summarized in Table 1.

    TABLE 1

    Part 1 (groups 1-21)C1C2C3C4C5
    Part 2 (groups 1-3)C1C2C3C4C4
    Part 3 (groups 1-5)C1C2C3C2C5
    Part 3 (groups 6-8)C1C2C3C2C4
    Part 3 (groups 9-21)C1C2C3C4C4


    In all groups, there is at least one subsidiary on pendants 1 and 2 (a W and an LB respectively) and no subsidiaries on the other positions. Additional subsidiaries on the first 2 positions are, with one exception, KB:W or LB-W.
  4. In parts 1 and 3, many values are repeated in the same position in consecutive groups or in the same position 2 groups later. The former can be represented as:,

    Pij= Pi+1,j and the latter as Pij = Pi+2,j

    In part 1, these hold in 20 and 12 places respectively; in part 2 in no places; and in part 3 in 27 and 18 places.

  5. The values in part 2 are related to the sums of values in part 3. Position by position, values in group 1 of part 2 are related to the sums of values in the first groups in each of the 7 sets in part 3; group 2 values are related to sums of values in the second groups of each of the sets; and group 3 values to the sums of values of the third group. That is:
    \[ P_{2ij}= \sum\limits_{k=0}^{6} P_{3,3k+i,j}\;\;\;for\;j=(1,2,...5),\;\; i=(1,2,3) \]
    This represents 15 sums and 105 values being summed. Of the 15 values in part 2, 8 are exactly these sums (or off by 1 in 1 digit); 5 are exact sums of only some of the 7 pendants:

    Example: P211 = P341 + P3,10,1 + P3,13,1 + P3,16,1 + P3,19,1 thus omitting P311 and P371

    and 2 are less than the sums but cannot be associated with a specific subset of the 7 pendants. (Note that the main cord is broken and so there could have been another part prior to part 1 that summed its values.