UR1140/KH0156 - Pendant Pendant Sums


Drawings:

Right Handed Sums:     # Sums = 53,  Max # Summands = 7,   (Min, Mean, Max) Sum Values = (11, 40, 114)
Click on Image to View Larger

Left Handed Sums:     # Sums = 49,  Max # Summands = 6,   (Min, Mean, Max) Sum Values = (11, 40, 114)
Click on Image to View Larger

Right Handed Sum Detail: - Click on column name to sort
# Color Sum Schema Sum Cord Sum Cord Value # Summands Summands
1
p91, 9 : 96B964p22: 19B + p23: 29B + p24: 18B + p25: 30B
2
p142, 5 : 22B223p60: 6B:BB + p61: 14B:BB + p62: 2B
3
p162, 7 : 17B172p59: 11B + p60: 6B:BB
4
p182, 9 : 91B915p28: 20B + p29: 25B + p30: 20B + p31: 15B + p32: 11B
5
p203, 2 : 13B132p34: 11B + p35: 2B
6
p223, 4 : 19B192p55: 9B + p56: 10B
7
p233, 5 : 29B292p58: 18B + p59: 11B
8
p273, 9 : 95B952p62: 2B + p63: 93B
9
p304, 3 : 20B202p60: 6B:BB + p61: 14B:BB
10
p364, 9 : 90B904p38: 32B + p39: 23B + p40: 23B + p41: 12B
11
p375, 1 : 34B342p57: 16B + p58: 18B
12
p455, 9 : 98B984p47: 36B + p48: 26B + p49: 26B + p50: 10B
13
p496, 4 : 26B262p56: 10B + p57: 16B
14
p516, 6 : 15B152p68: 10B + p69: 5B:BB
15
p546, 9 : 79B793p76: 45B + p77: 16B + p78: 18B:BB
16
p678, 4 : 36B362p112: 20B:G + p113: 16B
17
p728, 9 : 93B934p115: 12B + p116: 32B + p117: 15B + p118: 34B
18
p769, 4 : 45B455p122: 6B + p123: 18B + p124: 10B + p125: 6B + p126: 5B
19
p819, 9 : 98B982p99: 35B + p100: 63B
20
p8410, 3 : 28B282p101: 6B + p102: 22B:G
21
p8810, 7 : 18B:BB182p120: 6B:G + p121: 12B:G
22
p9010, 9 : 96B965p113: 16B + p114: 21B + p115: 12B + p116: 32B + p117: 15B
23
p9111, 1 : 114B1145p114: 21B + p115: 12B + p116: 32B + p117: 15B + p118: 34B
24
p9311, 3 : 23B:G232p151: 11B + p152: 12B
25
p9411, 4 : 24B:G243p120: 6B:G + p121: 12B:G + p122: 6B
26
p9511, 5 : 31B312p111: 11B:G + p112: 20B:G
27
p9611, 6 : 30B302p129: 11B:BB + p130: 19B:BB
28
p9811, 8 : 69B692p100: 63B + p101: 6B
29
p9911, 9 : 35B353p151: 11B + p152: 12B + p153: 12B
30
p10012, 1 : 63B637p120: 6B:G + p121: 12B:G + p122: 6B + p123: 18B + p124: 10B + p125: 6B + p126: 5B
31
p10212, 3 : 22B:G223p119: 4B + p120: 6B:G + p121: 12B:G
32
p10412, 5 : 17B172p110: 6B + p111: 11B:G
33
p10712, 8 : 61B612p127: 53B + p128: 8B
34
p11113, 3 : 11B:G112p125: 6B + p126: 5B
35
p11313, 5 : 16B162p124: 10B + p125: 6B
36
p11413, 6 : 21B213p124: 10B + p125: 6B + p126: 5B
37
p11613, 8 : 32B322p138: 10B:BB + p139: 22B:BB
38
p12314, 6 : 18B182p137: 8B + p138: 10B:BB
39
p12715, 1 : 53B534p150: 18B + p151: 11B + p152: 12B + p153: 12B
40
p13015, 4 : 19B:BB192p179: 11B + p180: 8B
41
p13115, 5 : 25B252p155: 8B + p156: 17B:BB
42
p13215, 6 : 24B242p152: 12B + p153: 12B
43
p13515, 9 : 21B212p141: 18B + p142: 3B
44
p13916, 4 : 22B:BB222p147: 11B:BB + p148: 11B:BB
45
p14116, 6 : 18B182p146: 7B + p147: 11B:BB
46
p14316, 8 : 27B272p175: 14B:BB + p176: 13B
47
p14517, 1 : 56B563p158: 23B + p159: 20B + p160: 13B
48
p15618, 3 : 17B:BB172p164: 4B + p165: 13B:BB
49
p15718, 4 : 18B:BB182p165: 13B:BB + p166: 5B:BB
50
p15918, 6 : 20B202p169: 4B + p170: 16B
51
p16118, 8 : 37B373p166: 5B:BB + p167: 11B + p168: 21B
52
p16719, 5 : 11B112p173: 4B + p174: 7B:BB
53
p16819, 6 : 21B212p174: 7B:BB + p175: 14B:BB

Left Handed Sum Detail: - Click on column name to sort
# Color Sum Schema Sum Cord Sum Cord Value # Summands Summands
1
p193, 1 : 16B162p1: 3B + p2: 13B
2
p253, 7 : 30B302p12: 20B + p13: 10B
3
p273, 9 : 95B952p17: 4B + p18: 91B
4
p375, 1 : 34B342p4: 22B + p5: 12B
5
p385, 2 : 32B322p13: 10B + p14: 22B
6
p455, 9 : 98B982p26: 3B + p27: 95B
7
p476, 2 : 36B363p5: 12B + p6: 14B + p7: 10B
8
p486, 3 : 26B262p33: 15B + p34: 11B
9
p546, 9 : 79B796p2: 13B + p3: 8B + p4: 22B + p5: 12B + p6: 14B + p7: 10B
10
p617, 7 : 14B:BB142p7: 10B + p8: 4B
11
p648, 1 : 22B223p60: 6B:BB + p61: 14B:BB + p62: 2B
12
p678, 4 : 36B362p49: 26B + p50: 10B
13
p708, 7 : 17B:BB172p59: 11B + p60: 6B:BB
14
p749, 2 : 41B413p31: 15B + p32: 11B + p33: 15B
15
p759, 3 : 15B152p68: 10B + p69: 5B:BB
16
p769, 4 : 45B453p57: 16B + p58: 18B + p59: 11B
17
p779, 5 : 16B162p61: 14B:BB + p62: 2B
18
p819, 9 : 98B983p54: 79B + p55: 9B + p56: 10B
19
p8210, 1 : 31B313p59: 11B + p60: 6B:BB + p61: 14B:BB
20
p8410, 3 : 28B283p33: 15B + p34: 11B + p35: 2B
21
p8510, 4 : 43B432p42: 25B + p43: 18B
22
p8610, 5 : 35B353p58: 18B + p59: 11B + p60: 6B:BB
23
p8910, 8 : 22B222p69: 5B:BB + p70: 17B:BB
24
p9010, 9 : 96B964p22: 19B + p23: 29B + p24: 18B + p25: 30B
25
p9111, 1 : 114B1144p54: 79B + p55: 9B + p56: 10B + p57: 16B
26
p9411, 4 : 24B:G243p69: 5B:BB + p70: 17B:BB + p71: 2B
27
p9711, 7 : 20B202p60: 6B:BB + p61: 14B:BB
28
p9811, 8 : 69B695p2: 13B + p3: 8B + p4: 22B + p5: 12B + p6: 14B
29
p10812, 9 : 25B252p50: 10B + p51: 15B
30
p10913, 1 : 53B534p55: 9B + p56: 10B + p57: 16B + p58: 18B
31
p11413, 6 : 21B212p87: 3B:BB + p88: 18B:BB
32
p11613, 8 : 32B323p68: 10B + p69: 5B:BB + p70: 17B:BB
33
p11814, 1 : 34B342p77: 16B + p78: 18B:BB
34
p12715, 1 : 53B533p117: 15B + p118: 34B + p119: 4B
35
p12915, 3 : 11B:BB112p125: 6B + p126: 5B
36
p13215, 6 : 24B242p122: 6B + p123: 18B
37
p13415, 8 : 21B213p124: 10B + p125: 6B + p126: 5B
38
p13616, 1 : 75B754p77: 16B + p78: 18B:BB + p79: 30B:BB + p80: 11B
39
p13916, 4 : 22B:BB223p119: 4B + p120: 6B:G + p121: 12B:G
40
p14316, 8 : 27B272p105: 16B + p106: 11B
41
p14517, 1 : 56B566p119: 4B + p120: 6B:G + p121: 12B:G + p122: 6B + p123: 18B + p124: 10B
42
p15418, 1 : 70B703p109: 53B + p110: 6B + p111: 11B:G
43
p15618, 3 : 17B:BB172p110: 6B + p111: 11B:G
44
p15818, 5 : 23B232p151: 11B + p152: 12B
45
p16018, 7 : 13B132p34: 11B + p35: 2B
46
p16118, 8 : 37B372p113: 16B + p114: 21B
47
p16319, 1 : 45B455p122: 6B + p123: 18B + p124: 10B + p125: 6B + p126: 5B
48
p16819, 6 : 21B212p141: 18B + p142: 3B
49
p17220, 1 : 28B282p123: 18B + p124: 10B

Khipu Notes:
Ashok Khosla Notes:
This khipu has been entered with a strange nonconsecutive numbering scheme, indicating either the clusters are off, or the pendants are misnumbered. Investigation into the databook is warranted.



Ascher Databook Notes:
  1. The khipu is attached to a carved wooden bar.
  2. UR1136 and UR1140 were acquired by the Museum in 1904. The provenance is given as Nasca. For a comparison of them, see UR1136.
  3. UR1140 is discussed by Nordenskiold (see Introduction) .A photograph of it appears in Schmidt, Max, 1929, Kunst und Kultur von Peru, Impropyläen-Verlagzu, Berlin.
  4. The way in which the bar is threaded separates the khipu into 2 parts each containing 10 groups of 9 pendants each

    Note: The pendant order on the listing proceeds from one end of the bar to the other, goes around the end, and continues on the other side. However, similar color and number patterns are found in both parts if the pendants are read instead from one end of the bar to the other, and then beginning at the original end on the other side of the bar. We will, therefore, refer to the pendants and groups on side 2 as if following the second scenario. Part 1 is pendants 1--->90 and references to the jth pendant in the ith group correspond to pendant 9 (i-1) +j. Part 2 is pendants 180--->91 and references to the jth pendant in the ith group correspond to pendant 190-9i-j.

    By color, each part is separated into 2 subparts of 6 groups and 4 groups respectively. Each group has the same color pattern: 5 B, 2 mixed, 2 B. In the first 6 groups in part 1, the 2 mixed cords are B:BB/B, and in the last 4 groups they are B:BB. In the first 6 groups in part 2, the 2 mixed cords are B:BB, and in the last 4 groups they are B:G.

  5. Subsidiaries are only on the last pendant in each group in part 1. All are BB.
  6. In all groups in both parts:
    1. The last pendant in each group has the maximum value.
    2. With the exception of group 10 in part 1, the value on pendant 7 is always great than the value on pendant 8.
  7. Within part 1:
    1. For the 6 groups of the first subpart, the sum of the values in the 5th position equals the sum of the values in the 4th position. That is:
      \[ \sum\limits_{i=1}^{6} P_{i5} = \sum\limits_{i=1}^{6} P_{i6} \]
    2. For the 4 groups of the second subpart, the sum of the values in the first position equals the sum of the values in the second position.
      \[ \sum\limits_{i=7}^{10} P_{i1} = \sum\limits_{i=7}^{10} P_{i2} \]
    3. Excluding the last pendant in each group, the sum of the values in the first group equals the sum of the values in the corresponding group in the second subpart (group 7).
      \[ \sum\limits_{j=1}^{8} P_{1j} = \sum\limits_{j=1}^{8} P_{7j} \]